Post-covid global health challenges: bacterial resistance

  • Camila Margarita Montesinos Guevara Center for Public Health and Clinical Epidemiology (CISPEC)
  • Juan José Miranda Center for Public Health and Clinical Epidemiology (CISPEC)
Keywords: Antibiotic Resistance, Antibacterial Drug Resistance, Antiviral Drug Resistance, Infection.

Abstract

There are microorganisms that can present important DNA mutations, which allow them to adapt and evade the hosts’ innate immunity, as well as developing drug resistance. Some strategies have been proposed to reduce and delay the presence of multi-resistant bacteria worldwide. In Ecuador, specifically, resistant microorganisms have been detected in different hospitals and rural locations, E.coli has been the most commonly reported to date. It is essential to take preventive measures and invest in epidemiological surveillance to stop the uncontrolled use of antibiotics in humans and animals. Especial attention must be paid to the interaction of antimicrobial resistance with other epidemics or pandemics such as COVID-19, since during this time there has been an increased use of antibiotics to treat respiratory infections. More studies regarding this impact are needed since we do not have enough data to demonstrate the magnitude of this effect.

Downloads

Download data is not yet available.

References

1. Global Action Plan on Antimicrobial Resistance: The 68th World Health Assembly (WHA) issued this plan for action on 26 May 2015. (2015). Microbe (Washington, D.C.), 10(9), 354–355. https://doi.org/10.1128/microbe.10.354.1
2. Ware L. Apocalypse now: antimicrobial resistance [Internet]. Evidently Cochrane. 2017 [citado el 4 de julio de 2022]. Disponible en: https://www.evidentlycochrane.net/apolcalypse-now-antimicrobial-resistance/
3. Domingo S, Gustavo Domínguez H, Cevallos V. Instituto Nacional de Investigacion en Salud Publica reporte de datos de resistencia a los antimicrobianos en Ecuador 2014-2018 [Internet]. Gob.ec. [citado el 4 de julio de 2022]. Disponible en:https://www.salud.gob.ec/wp-content/uploads/2019/08/gaceta_ram2018.pdf
4. Ministerio de Salud Pública del Ecuador, Plan Nacional para la prevención y control de la resistencia antimicrobiana; Quito, Viceministerio de Gobernanza y Vigilancia de la Salud, 2019, Gob.ec. [citado el 4 Jul 2022]. Disponible en: https://www.salud.gob.ec/wp-content/uploads/2019/10/Plan-Nacional-para-la-prevenci%C3%B3n-y-control-de-la-resistencia-antimicrobiana_2019_compressed.pdf
5. Centers for Disease Control and Prevention. Antibiotic resistance threats in the United States, 2013. Disponible en: www.cdc.gov/drugresistance/threat‐report‐2013/index.html [citado el 16 Marzo 2016].
6. The Lancet. Urgently needed: new antibiotics. Lancet [Internet]. 2009;374(9705):1868. Disponible en: http://dx.doi.org/10.1016/S0140-6736(09)62076-6
7. Smith, R., & Coast, J. (2013). The true cost of antimicrobial resistance. BMJ (Clinical Research Ed.), 346(mar11 3), f1493. https://doi.org/10.1136/bmj.f1493
8. O'Neill J, Davies S, Rex J, White LJ, Murray R. Antimicrobial resistance: tackling a crisis for the health and wealth of nations. Disponible en: https://amr-review.org/sites/default/files/AMR%20Review%20Paper%20-%20Tackling%20a%20crisis%20for%20the%20health%20and%20wealth%20of%20nations_1.pdf [Citado el: 10 Agosto 2022].
9. Spellberg, B., Bartlett, J. G., & Gilbert, D. N. (2013). The future of antibiotics and resistance. The New England Journal of Medicine, 368(4), 299–302. https://doi.org/10.1056/NEJMp1215093
10. Van Boeckel TP, Gandra S, Ashok A, Caudron Q, Grenfell BT, Levin SA, et al. Global antibiotic consumption 2000 to 2010: an analysis of national pharmaceutical sales data. Lancet Infectious Diseases 2014;14(8):742‐50.
11. Adriaenssens, N., Coenen, S., Versporten, A., Muller, A., Minalu, G., Faes, C., Vankerckhoven, V., Aerts, M., Hens, N., Molenberghs, G., Goossens, H., & ESAC Project Group. (2011). European Surveillance of Antimicrobial Consumption (ESAC): outpatient quinolone use in Europe (1997-2009). The Journal of Antimicrobial Chemotherapy, 66 Suppl 6(suppl_6), vi47-56. https://doi.org/10.1093/jac/dkr457
12. Public Health England. UK One Health Report. Joint report on human and animal antibiotic use, sales and resistance, 2013. Disponible en: www.gov.uk/government/uploads/system/uploads/attachment_data/file/447319/One_Health_Report_July2015.pdf [Citado el 13 Junio 2016].
13. Australian Commission on Safety and Quality in Health Care (ACSQHC). AURA 2016: First Australian report on antimicrobial use and resistance in human health. www.safetyandquality.gov.au/publications/aura‐2016‐first‐australian‐report‐on‐antimicrobial‐use‐and‐resistance‐in‐human‐health/ [Citado el 20 Abril 2017].
14. Chung, A., Perera, R., Brueggemann, A. B., Elamin, A. E., Harnden, A., Mayon-White, R., Smith, S., Crook, D. W., & Mant, D. (2007). Effect of antibiotic prescribing on antibiotic resistance in individual children in primary care: prospective cohort study. BMJ (Clinical Research Ed.), 335(7617), 429. https://doi.org/10.1136/bmj.39274.647465.BE
15. Malhotra‐Kumar S, Lammens C, Coenen S, Van Herck K, Goossens H. Effect of azithromycin and clarithromycin therapy on pharyngeal carriage of macrolide‐resistant streptococci in healthy volunteers: a randomised, double‐blind, placebo‐controlled study. Lancet 2007;369(9560):482‐90.
16. Costelloe, C., Metcalfe, C., Lovering, A., Mant, D., & Hay, A. D. (2010). Effect of antibiotic prescribing in primary care on antimicrobial resistance in individual patients: systematic review and meta-analysis. BMJ (Clinical Research Ed.), 340(may18 2), c2096. https://doi.org/10.1136/bmj.c2096
17. Huttner, A., Harbarth, S., Carlet, J., Cosgrove, S., Goossens, H., Holmes, A., Jarlier, V., Voss, A., & Pittet, D. (2013). Antimicrobial resistance: a global view from the 2013 World Healthcare-Associated Infections Forum. Antimicrobial Resistance and Infection Control, 2(1), 31. https://doi.org/10.1186/2047-2994-2-31
18. O'Neill J, Davies S, Rex J, White LJ, Murray R. Antimicrobial resistance: tackling a crisis for the health and wealth of nations. Disponible en: review.org/sites/default/files/AMR%20Review%20Paper%20%20Tackling%20a%20crisis%20for%20the%20health%20and%20wealth%20of%20nations_1.pdf [Citado el 20 Abril 2017].
19. O’Neill J, Chair. Tackling Drug-Resistant Infections Globally: Final Report and Recommendations. London, UK: Review on Antimicrobial Resistance; 2016; p. 1-84.
20. Tonkin-Crine SKG, Tan PS, van Hecke O, Wang K, Roberts NW, McCullough A, et al. Clinician-targeted interventions to influence antibiotic prescribing behaviour for acute respiratory infections in primary care: an overview of systematic reviews. Cochrane Libr [Internet]. 2017 [citado el 4 de julio 2022]; 2019(9). Disponible en: https://www.cochranelibrary.com/cdsr/doi/10.1002/14651858.CD012252.pub2/full/es
21. Costelloe, C., Metcalfe, C., Lovering, A., Mant, D., & Hay, A. D. (2010). Effect of antibiotic prescribing in primary care on antimicrobial resistance in individual patients: systematic review and meta-analysis. BMJ (Clinical Research Ed.), 340(may18 2), c2096. https://doi.org/10.1136/bmj.c2096
22. Goossens H, Ferech M, Vander Stichele R, Elseviers M, ESAC Project Group. Outpatient antibiotic use in Europe and association with resistance: a cross‐national database study. Lancet 2005;365(9459):579‐87.
23. Gulliford, M. C., Dregan, A., Moore, M. V., Ashworth, M., van Staa, T., McCann, G., Charlton, J., Yardley, L., Little, P., & McDermott, L. (2014). Continued high rates of antibiotic prescribing to adults with respiratory tract infection: survey of 568 UK general practices. BMJ Open, 4(10), e006245. https://doi.org/10.1136/bmjopen-2014-006245
24. Shapiro, D. J., Hicks, L. A., Pavia, A. T., & Hersh, A. L. (2014). Antibiotic prescribing for adults in ambulatory care in the USA, 2007-09. The Journal of Antimicrobial Chemotherapy, 69(1), 234–240. https://doi.org/10.1093/jac/dkt301
25. Davey P, Marwick CA, Scott CL, Charani E, McNeil K, Brown E, et al. Interventions to improve antibiotic prescribing practices for hospital inpatients. Cochrane Database Syst Rev [Internet]. 2017 [citado el 4 de julio 2022]; 2(2):CD003543. Disponible en: https://www.cochranelibrary.com/cdsr/doi/10.1002/14651858.CD003543.pub4/full/es
26. Simor, A. E. (2001). Containing methicillin-resistant S aureus. Surveillance, control, and treatment methods. Postgraduate Medicine, 110(4), 43–48; quiz 11. https://doi.org/10.3810/pgm.2001.10.1043
27. Herwaldt, L. A. (1999). Control of methicillin-resistant Staphylococcus aureus in the hospital setting. The American Journal of Medicine, 106(5A), 11S-18S; discussion 48S-52S. https://doi.org/10.1016/s0002-9343(98)00350-7
28. Graffunder, E. M., & Venezia, R. A. (2002). Risk factors associated with nosocomial methicillin-resistant Staphylococcus aureus (MRSA) infection including previous use of antimicrobials. The Journal of Antimicrobial Chemotherapy, 49(6), 999–1005. https://doi.org/10.1093/jac/dkf009
29. Safdar, N., & Maki, D. G. (2002). The commonality of risk factors for nosocomial colonization and infection with antimicrobial-resistant Staphylococcus aureus, enterococcus, gram-negative bacilli, Clostridium difficile, and Candida. Annals of Internal Medicine, 136(11), 834–844. https://doi.org/10.7326/0003-4819-136-11-200206040-00013
30. Health Statistics Quarterly 2013. Deaths involving MRSA: England and Wales, 2008 to 2012. [citado el 8 de julio 2022] Disponible en: file:///C:/Users/Miranda/Downloads/Deaths%20involving%20MRSA%202008%20to%202012.pdf
31. Vista de PREVALENCIA DE Escherichia coli-ST131 PRODUCTORAS DE BLEE EN AISLADOS DE BACTERIEMIAS DESDE 2009 AL 2018 [Internet]. Gob.ec. [citado el 8 de agosto 2022]. Disponible en: https://revistaecuadorescalidad.agrocalidad.gob.ec/revistaecuadorescalidad/index.php/revista/article/view/95/253
32. Gaus D, Larco D. La epidemiologia microbiológica de una unidad rural de cuidados intensivos en Ecuador. Práct fam rural [Internet]. 2021 [citado el 8 de agosto 2022];6(1). Disponible en: https://practicafamiliarrural.org/index.php/pfr/article/view/191
33. Monitoreo local de resistencia a los antibióticos en Escherichia Coli en una zona rural de Ecuador: más allá del modelo biomédico. Disponible en:http://file:///R:/Medicos/Downloads/80-Texto%20del%20art%C3%ADculo-874-1-10-20211030.pdf [citado el 8 de agosto 2022]
34. Gurny R, Möller M. Editorial. Evolución de la resistencia a los antibióticos en una zona rural de Ecuador. Eur J Pharm Biopharm [Internet]. 2013 [citado el 8 de agosto 2022]; 83(1):1. Disponible en: https://practicafamiliarrural.org/index.php/pfr/article/download/144/177?inline=1
35. Cosgrove, S. E., Sakoulas, G., Perencevich, E. N., Schwaber, M. J., Karchmer, A. W., & Carmeli, Y. (2003). Comparison of mortality associated with methicillin-resistant and methicillin-susceptible Staphylococcus aureus bacteremia: a meta-analysis. Clinical Infectious Diseases: An Official Publication of the Infectious Diseases Society of America, 36(1), 53–59. https://doi.org/10.1086/345476
36. Hughes C, Tunney M, Bradley MC. Infection control strategies for preventing the transmission of meticillin-resistant Staphylococcus aureus (MRSA) in nursing homes for older people. Cochrane Database Syst Rev [Internet]. 2013;2013(11):CD006354. Disponible en: http://dx.doi.org/10.1002/14651858.CD006354.pub4
37. Director-General’s opening remarks at the media briefing on COVID-19 - 11 March 2020. (n.d.). Who.int. [Citado el 4 de Julio 2022], Disponible en: https://www.who.int/director-general/speeches/detail/who-director-general-s-opening-remarks-at-the-media-briefing-on-covid-19---11-march-2020
38. Langford BJ, So M, Raybardhan S, Leung V, Soucy J-P, Westwood D, Daneman N, MacFadden DR (2021) Antibiotic prescribing in patients with COVID-19: rapid review and meta-analysis Clinical Microbiology and Infection 1:18. https://doi.org/10.1016/j.cmi.2020.12.018
39. Sproston, N. R., & Ashworth, J. J. (2018). Role of C-reactive protein at sites of inflammation and infection. Frontiers in Immunology, 9. https://doi.org/10.3389/fimmu.2018.00754
40. Langford BJ, So M, Raybardhan S, Leung V, Westwood D, MacFadden DR, Soucy JR, Daneman N (2020) Bacterial co-infection and secondary infection in patients with COVID-19: a living rapid review and meta-analysis. Clinical Microbiology and Infection 26:1622–1629. https://doi.org/10.1016/j.cmi.2020.07.016
41. Gutiérrez-Gutiérrez B, Salamanca, E de Cueto M, et al, Effect of appropriate combination therapy on mortality of patients with bloodstream infections due to carbapenemase-producing Enterobacteriaceae (INCREMENT): a retrospective cohort study The Lancet Infectious Diseases 17:726–734. https://doi.org/10.1016/S1473-3099(17)30228-1
42. Clancy, C. J., Buehrle, D. J., & Nguyen, M. H. (2020). PRO: The COVID-19 pandemic will result in increased antimicrobial resistance rates. JAC-Antimicrobial Resistance, 2(3), dlaa049. https://doi.org/10.1093/jacamr/dlaa049
43. Knight GM, Glover RE, McQuaid CF, Olaru ID, Gallandat K, Leclerc QJ, et al. Antimicrobial resistance and COVID-19: Intersections and implications. Elife [Internet]. 2021 [cited 2022 Jul 4];10. Available from: http://dx.doi.org/10.7554/eLife.64139
Published
2022-10-13
How to Cite
1.
Montesinos Guevara CM, Miranda JJ. Post-covid global health challenges: bacterial resistance. PFR [Internet]. 2022Oct.13 [cited 2024Nov.23];7(3). Available from: https://practicafamiliarrural.org/index.php/pfr/article/view/247