Multidrug-resistant pulmonary tuberculosis in Esmeraldas, Ecuador (2018–2022): prevalence and clinical–epidemiological profile from a retrospective observational study

  • Jaime Angamarca-Iguago Centro de Investigación de Salud Pública y Epidemiología Clínica (CISPEC), Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE. Quito, Ecuador.

Resumen

Background: Multidrug-resistant tuberculosis (MDR-TB) remains a growing public health concern globally, particularly in settings with limited diagnostic capacity and high disease burden. In Ecuador, Esmeraldas province has reported a disproportionately high number of TB cases. However, local evidence on resistance patterns and patient characteristics is scarce.

Objective: To estimate the prevalence of MDR-TB and describe its epidemiological and clinical characteristics in the province of Esmeraldas, Ecuador, from 2018 to 2022.

Methods: A descriptive, cross-sectional study was conducted using secondary data from Ecuador's Ministry of Public Health. Confirmed pulmonary TB cases with positive culture or GeneXpert results were analyzed. MDR-TB prevalence rates were calculated, and patient characteristics were stratified by sex, age, district of residence, TB contact history, and drug resistance profile. Statistical analysis included univariate and bivariate procedures, with prevalence odds ratios (OR) and chi-square tests.

Results: Among 1,461 confirmed TB cases reported in Zone 1, 902 (61.7%) were from Esmeraldas. Of these, 49 (5.4%) were identified as MDR-TB. The mean annual MDR-TB prevalence in Esmeraldas was 1.7 cases per 100,000 population. The majority of MDR-TB patients were male (59.2%), aged 20–49 years (82%), and urban residents (79.6%). Rifampicin resistance was found in 91.8% of cases. Relapse cases showed a significantly higher odds of resistance (OR = 3.48). One case met the criteria for extensively drug-resistant TB (XDR-TB). Treatment outcomes were incomplete in 41% of cases; among reported outcomes, cure rate was 22.4%, and the case fatality rate was 10.2%.

Conclusions: MDR-TB remains a persistent threat in Esmeraldas, with relapse and urban residence as prominent risk markers. The detection of XDR-TB and treatment discontinuation rates highlight critical weaknesses in the TB control program. Targeted strategies to improve rapid diagnostics, follow-up, and data quality are urgently needed to contain the spread of resistance and achieve TB elimination goals in Ecuador.

Descargas

La descarga de datos todavía no está disponible.

Citas

1. Ministerio de Salud Publica. Boletín Anual Tuberculosis 2018 [Internet]. Vol. 2017. 2018. Available from: https://www.salud.gob.ec/wp-content/uploads/2019/03/informe_anual_TB_2018UV.pdf
2. Oswaldo J, Mariana C, Hernández A. Situación de la tuberculosis multirresistente en Perú. Acta Médica Peru. 2017;34(2):114–25.
3. Organización Panamericana de la Salud (OPS). Día Mundial de la Tuberculosis [Internet]. OPS. 2021. Available from: https://www.paho.org/es/campanas/dia-mundial-tuberculosis-2021
4. Ektefaie Y, Dixit A, Freschi L, Farhat MR. Globally diverse Mycobacterium tuberculosis resistance acquisition: a retrospective geographical and temporal analysis of whole genome sequences. The Lancet Microbe [Internet]. 2021 Mar;2(3):e96–104. Available from: http://dx.doi.org/10.1016/S2666-5247(20)30195-6
5. Valcárcel-Pérez I, Molina JL, Fuentes Z. ¿Es la campaña de cribado masivo suficiente para el control de la tuberculosis en las prisiones de Ecuador? Rev Española Sanid Penit [Internet]. 2021;23(3):108–14. Available from: http://scielo.isciii.es/scielo.php?script=sci_arttext&pid=S1575-06202021000300108&lang=pt
6. Tatés-Ortega N, Álvarez J, López L, Mendoza-Ticona A, Alarcón-Arrascue E. Pérdida en el seguimiento de pacientes tratados por tuberculosis resistente a rifampicina o multidrogorresistente en Ecuador. Rev Panam Salud Pública [Internet]. 2019 Dec 20;43:1. Available from: http://iris.paho.org/xmlui/handle/123456789/51735
7. Lohiya A, Suliankatchi Abdulkader R, Rath RS, Jacob O, Chinnakali P, Goel AD, et al. Prevalence and patterns of drug resistant pulmonary tuberculosis in India—A systematic review and meta-analysis. J Glob Antimicrob Resist [Internet]. 2020 Sep;22:308–16. Available from: https://linkinghub.elsevier.com/retrieve/pii/S2213716520300722
8. World Health Organization (Institution). Consolidated Guidelines on Tuberculosis, Diagnosis. Who. 2020. 99 p.
9. Xi Y, Zhang W, Qiao R-J, Tang J. Risk factors for multidrug-resistant tuberculosis: A worldwide systematic review and meta-analysis. Quinn F, editor. PLoS One [Internet]. 2022 Jun 16;17(6):e0270003. Available from: http://dx.doi.org/10.1371/journal.pone.0270003
10. Pradipta IS, Forsman LD, Bruchfeld J, Hak E, Alffenaar J-W. Risk factors of multidrug-resistant tuberculosis: A global systematic review and meta-analysis. J Infect [Internet]. 2018 Dec;77(6):469–78. Available from: https://doi.org/10.1016/j.jinf.2018.10.004
11. Kantor I, Latini O, Barrera L. LA RESISTENCIA Y MULTIRRESISTENCIA A LOS MEDICAMENTOS ANTITUBERCULOSOS EN LA ARGENTINA Y EN OTROS PAISES DE AMERICA LATINA. Medicina (B Aires). 1998;58:1–8.
12. Quimí López DI, Quintero Sánchez R, Vélez Díaz E, Acuña Zhingri NM. Tuberculosis resistente a medicamentos de primera línea en pacientes del cantón Durán, Ecuador. Rev EUGENIO ESPEJO [Internet]. 2022 Jan 11;16(1):81–9. Available from: https://eugenioespejo.unach.edu.ec/index.php/EE/article/view/351
13. World Health Organization (Institution). Global tuberculosis report 2024. Geneva; 2024.
14. Castro-Rodriguez B, Franco-Sotomayor G, Orlando SA, Garcia-Bereguiain MÁ. Molecular epidemiology of Mycobacterium tuberculosis in Ecuador: Recent advances and future challenges. J Clin Tuberc Other Mycobact Dis [Internet]. 2024 Dec;37:100465. Available from: https://linkinghub.elsevier.com/retrieve/pii/S2405579424000524
15. Belay G, Getachew H, Birku T, Tadese A, Gashaw Y, Getie M, et al. Rifampicin-resistant Mycobacterium tuberculosis and unsuccessful results from Xpert® MTB/Rif-Ultra assay in Amhara Region, Ethiopia. J Clin Tuberc Other Mycobact Dis [Internet]. 2025 Aug;40:100528. Available from: https://linkinghub.elsevier.com/retrieve/pii/S2405579425000191
16. Liebenberg D, Gordhan BG, Kana BD. Drug resistant tuberculosis: Implications for transmission, diagnosis, and disease management. Front Cell Infect Microbiol [Internet]. 2022 Sep 23;12:943545. Available from: https://www.frontiersin.org/articles/10.3389/fcimb.2022.943545/full
17. Tengan FM, Figueiredo GM, Leite OH, Nunes AK, Manchiero C, Dantas BP, et al. Prevalence of multidrug‐resistant tuberculosis in Latin America and the Caribbean: a systematic review and meta‐analysis. Trop Med Int Heal [Internet]. 2020 Sep 30;25(9):1065–78. Available from: https://onlinelibrary.wiley.com/doi/10.1111/tmi.13453
18. Mbuh TP, Wandji A, Keugni L, Mboh S, Ane-Anyangwe I, Mbacham WF, et al. Predictors of Drug‐Resistant Tuberculosis among High‐Risk Population Diagnosed under National Program Conditions in the Littoral Region, Cameroon. De Molon RS, editor. Biomed Res Int [Internet]. 2021 Jan 19;2021(1). Available from: https://onlinelibrary.wiley.com/doi/10.1155/2021/8817442
19. Faye L, Hosu M, Apalata T. Drug-Resistant Tuberculosis in Rural Eastern Cape, South Africa: A Study of Patients’ Characteristics in Selected Healthcare Facilities. Int J Environ Res Public Health [Internet]. 2024 Nov 30;21(12):1594. Available from: https://www.mdpi.com/1660-4601/21/12/1594
20. Cedeño-Vega R, Quevedo-Bastidas I, Angamarca-Iguago J, Cagua-Ordoñez JC, Parise-Vasco JM, Simancas-Racines D. Sociodemographic and spatiotemporal distribution of tuberculosis and human immunodeficiency virus co-infection in three cantons of Guayas, Ecuador: A cross-sectional study. Medwave [Internet]. 2025 Apr 16;25(03):e3042–e3042. Available from: https://www.medwave.cl/investigacion/estudios/3042.html
21. Swartwood NA, Cohen T, Marks SM, Hill AN, Asay GRB, Self J, et al. Effects of the COVID-19 pandemic on TB outcomes in the United States: a Bayesian analysis. medRxiv [Internet]. 2024 Oct 18;1(165):1–13. Available from: http://medrxiv.org/lookup/doi/10.1101/2024.10.17.24315683
22. Tesema E, Biru M, Leta T, Kumsa A, Liaulseged A, Gizatie G, et al. Drug-resistant tuberculosis care and treatment outcomes over the last 15 years in Ethiopia: Results from a mixed-method review of trends. Dholakia YN, editor. PLoS One [Internet]. 2024 Aug 26;19(8):e0306076. Available from: https://dx.plos.org/10.1371/journal.pone.0306076
23. Calixto F, Pantoja L. Características y frecuencia de tuberculosis antes y durante la pandemia por COVID-19 en adultos atendidos en un centro de atención primaria, Lima-Perú, 2019-2020. Horiz Médico [Internet]. 2023 Sep 23;23(3):e2239. Available from: https://www.horizontemedico.usmp.edu.pe/index.php/horizontemed/article/view/2239
24. Van Dinh L, Tran KT, Codlin AJ, Vo LNQ, Nguyen NTT, Nguyen LP, et al. Prevalence of Xpert MTB/RIF Ultra Trace Call Results and Associated Risk Factors During Active Tuberculosis Case Finding in Viet Nam: A Programmatic Evaluation. Diagnostics [Internet]. 2025 Apr 15;15(8):1006. Available from: https://www.mdpi.com/2075-4418/15/8/1006
25. Huang W, Lee MKT, Sin ATK, Nazari RS, Chua SY, Sng L-H. Evaluation of Xpert MTB/RIF Ultra assay for detection of Mycobacterium tuberculosis and rifampicin resistance. Pathology [Internet]. 2023 Aug;55(5):688–97. Available from: https://www.sciencedirect.com/science/article/pii/S0031302523001162
Publicado
2025-07-31
Cómo citar
1.
Angamarca-Iguago J. Multidrug-resistant pulmonary tuberculosis in Esmeraldas, Ecuador (2018–2022): prevalence and clinical–epidemiological profile from a retrospective observational study. PFR [Internet]. 31 de julio de 2025 [citado 9 de agosto de 2025];10(2). Disponible en: https://practicafamiliarrural.org/index.php/pfr/article/view/364