Frecuencia del envenenamiento por mordeduras de serpientes y perfil sociodemográfico en una población de la Amazonía ecuatoriana y revisión de la literatura.

  • Miguel Jacob Ochoa Andrade .
Palabras clave: Mordeduras de serpientes, población indígena, ecosistema amazónico, Ecuador.

Resumen

Introducción. La mordedura por serpiente, denominada ofidismo o accidente ofídico, es una patología tropical y urgencia médica con tasas de morbilidad considerable. Su severidad se clasifica en envenenamiento leve, moderado y severo. Objetivo. Determinar el perfil sociodemográfico y la frecuencia del envenenamiento del accidente ofídico en la población del Cantón Taisha. Materiales y métodos. Estudio de casos, retrospectivo, descriptivo. Se incluyó 116 pacientes con diagnóstico de ofidismo atendidos en primer y segundo nivel de atención del Cantón Taisha durante el período 2017-2018. Se analizaron datos demográficos como sexo, grupo etario, etnia, grado de severidad y estacionalidad. Se creó una base en Microsoft Excel 2013 y se procesó con el programa Epi Info 7. Resultados. El accidente ofídico predominó en hombres (60,34%), y en adultos (55,17 %). La parroquia más frecuente fue Macuma (31,90%), la etnia predominante fue indígena con (99,14%). El envenenamiento mínimo (50%), moderado (37,07%), y severo (12,93%), con más prevalencia en los meses de junio, agosto y noviembre con el 12,07% cada uno. Conclusión. Las características sociodemográficas, así como los porcentajes de envenenamiento obtenidos en el presente estudio tienen una buena correlación con resultados emitidos por el Ministerio de Salud Pública.   

 

Descargas

La descarga de datos todavía no está disponible.

Citas

1. Valencia JH, Garzón Tello K, Barragán Paladines ME. Serpientes venenosas del Ecuador: Sistemática, taxonomía, historia natural, conservación envenenamiento y aspectos antropológicos. Fundación Herpetológica Gustavo Orcés, Universidad de Texas Arlington.
2. Gutiérrez JM, Calvete JJ, Habib AG, Harrison RA, Williams DJ, Warrell DA. Snakebite envenoming. Nat Rev Dis Prim. 2017;3:17063.
3. Organización Mundial de la Salud. Mordeduras de serpientes venenosas. [Internet]. Abril 2019. Disponible en: https://www.who.int/es/news-room/fact-sheets/detail/snakebite-envenoming.
4. Sant’Ana C, Gutiérrez JM. Critical Care Toxicology. Crit Care Toxicol. 2016;
5. Ferreira A, Costa C, Ribeiro JR. Perfil epidemiológico de acidentes ofídicos do Estado do Amapá. Rev Soc Bras Med Trop. 2009;42(3):329–35.
6. Fenwick AM, Gutberlet RL, Evans JA, Parkinson CL. Morphological and molecular evidence for phylogeny and classification of South American pitvipers, genera Bothrops, Bothriopsis, and Bothrocophias (serpentes: Viperidae). Zool J Linn Soc. 2009;156(3):617–40.
7. Ministerio de Salud Pública. Manejo clínico de pacientes con mordeduras de serpientes venenosas y picaduras de escorpiones. Protocolo basado en la evidencia. Primera edición Quito: Dirección Nacional de Prevención y Control y Dirección Nacional de Normatización; 2017. Disponible en: http://salud.gob.ec.
8. Navarrete M. Las serpientes venenosas de importancia en la salud pública del Perú. Rev electrón vet. 2010;11(7).
9. Paoli, M.; Rigoni, M.; Koster, G.; Rossetto, O.; Montecucco, C.; Postle, A.D. Mass spectrometry analysis of the phospholipase A2 activity of snake pre-synaptic neurotoxins in cultured neurons. J. Neurochem. 2009, 111, 737–744.
10. Pungerˇcar, J.; Križaj, I. Understanding the molecular mechanism underlying the presynaptic toxicity of secreted phospholipases A2. Toxicon 2007, 50, 871–892.
11. Prasarnpun, S.; Walsh, J.; Awad, S.; Harris, J. Envenoming bites by kraits: The biological basis of treatment-resistant neuromuscular paralysis. Brain 2005, 128, 2987–2996.
12. Vulfius, C.A.; Kasheverov, I.E.; Kryukova, E.V.; Spirova, E.N.; Shelukhina, I.V.; Starkov, V.G.; Andreeva, T.V.; Faure, G.; Zouridakis, M.; Tsetlin,V.I.; et al. Pancreatic and snake venom presynaptically active phospholipases A2 inhibit nicotinic acetylch.
13. Fuly, A.; Machado, O.; Alves, E.; Carlini, C. Mechanism of inhibitory action on platelet activation of a phospholipase A2 isolated from Lachesis muta (Bushmaster) snake venom. Thromb. Haemost. 1997, 78, 1372–1380.
14. Tzeng, M.-C.; Yen, C.-H.; Hseu, M.-J.; Dupureur, C.M.; Tsai, M.-D. Conversion of bovine pancreatic phospholipaseAat a single site into a competitor of neurotoxic phospholipasesAby site-directed mutagenesis. J. Biol. Chem. 1995, 270, 2120–2123.
15. Kini, R.M. Excitement ahead: Structure, function and mechanism of snake venom phospholipase A2 enzymes. Toxicon 2003, 42, 827–840.
16. Mackessy, S.P. Handbook of Venoms and Toxins of Reptiles; CRC Press: Boca Raton, FL, USA, 2010.
17. Williams, H.F. Et, al. Mechanisms underpinning the permanent muscle damage induced by snake venom metalloprotease. PLoS Negl. Trop. Dis. 2019, 13, e0007041.
18. Serrano, S.M.; Maroun, R.C. Snake venom serine proteinases: Sequence homology vs. substrate specificity, a paradox to be solved. Toxicon 2005, 45, 1115–1132.
19. Xiong, S.; Huang, C. Synergistic strategies of predominant toxins in snake venoms. Toxicol. Lett. 2018, 287, 142–154.
20. Vaiyapuri, S. Et, al. Kallikrein enzymes. In Venomous Reptiles and Their Toxins: Evolution, Pathophysiology and Biodiscovery; Fry, B.G., Ed.; Oxford University Press: Oxford, UK, 2015; pp. 267–280.
21. Kisiel, W. E_ect of snake venoms on factor V. Handb. Nat. Toxins Reptil. Venom. Toxins 2018, 2018, 253–264.
22. Santos, B.F.; Serrano, S.M.; Kuliopulos, A.; Niewiarowski, S. Interaction of viper venom serine peptidases with thrombin receptors on human platelets. FEBS Lett. 2000, 477, 199–202.
23. Sanchez, E.F.; Santos, C.I.; Magalhaes, A.; Diniz, C.R.; Figueiredo, S.; Gilroy, J.; Richardson, M. Isolation ofa proteinase with plasminogen-activating activity from Lachesis muta muta (bushmaster) snake venom. Arch. Biochem. Biophys. 2000, 378, 131–141.
24. Kisiel, W.; Kondo, S.; Smith, K.; McMullen, B.; Smith, L. Characterization of a protein C activator from agkistrodon contortrix contortrix venom. J. Biol. Chem. 1987, 262, 12607–12613.
25. Meléndez-Martínez, D.; Muñoz, J.M.; Barraza-Garza, G.; Cruz-Peréz, M.S.; Gatica-Colima, A.; Alvarez-Parrilla, E.; Plenge-Tellechea, L.F. Rattlesnake crotalus molossus nigrescens venom induces oxidative stress on human erythrocytes. J. Venom. Anim. Toxins .
26. Sharma, R.D.; Katkar, G.D.; Sundaram, M.S.; Paul, M.; NaveenKumar, S.K.; Swethakumar, B.; Hemshekhar, M.; Girish, K.S.; Kemparaju, K. Oxidative stress-induced methemoglobinemia is the silent killer during snakebite: A novel and strategic neutralization by.
27. Isoyama, T.; Thwaites, D.; Selzer, M.G.; Carey, R.I.; Barbucci, R.; Lokeshwar, V.B. Di_erential selectivity of hyaluronidase inhibitors toward acidic and basic hyaluronidases. Glycobiology 2006, 16, 11–21.
28. Suwansrinon, K.; Khow, O.; Mitmoonpitak, C.; Daviratanasilpa, S.; Chaiyabutr, N.; Sitprija, V. E_ects of Russell’s viper venom fractions on systemic and renal hemodynamics. Toxicon 2007, 49, 82–88.
29. Nirthanan, S.; Gwee, M.C.E. Three-Finger & alpha;-Neurotoxins and the Nicotinic Acetylcholine Receptor, Forty Years On. J. Pharmacol. Sci. 2004, 94, 1–17.
30. Yamazaki, Y.; Morita, T. Structure and function of snake venom cysteine-rich secretory proteins. Toxicon 2004, 44, 227–231.
31. Yamazaki, Y.; Koike, H.; Sugiyama, Y.; Motoyoshi, K.; Wada, T.; Hishinuma, S.; Mita, M.; Morita, T. Cloning and characterization of novel snake venom proteins that block smooth muscle contraction. Eur. J. Biochem. 2002, 269, 2708–2715.
32. Laustsen, A.H.; Karatt-Vellatt, A.; Masters, E.W.; Arias, A.S.; Pus, U.; Knudsen, C.; Oscoz, S.; Slavny, P.; Gri_ths, D.T.; Luther, A.M.; et al. In vivo neutralization of dendrotoxin-mediated neurotoxicity of black mamba venom by oligoclonal human IgG ant.
33. Harvey, A.L. Twenty years of dendrotoxins. Toxicon 2001, 39, 15–26.
34. Laustsen, A.H.; Lomonte, B.; Lohse, B.; Fernández, J.; Gutiérrez, J.M. Unveiling the nature of black mamba (Dendroaspis polylepis) venom through venomics and antivenom immunoprofiling: Identification of key toxin targets for antivenom development. J. Prot.
35. Ebner, S.; Sharon, N.; Ben-Tal, N. Evolutionary analysis reveals collective properties and specificity in the C-type lectin and lectin-like domain superfamily. Proteins Struct. Funct. Bioinform. 2003, 53, 44–55.
36. Clemetson, K.J. Snaclecs (snake C-type lectins) that inhibit or activate platelets by binding to receptors. Toxicon 2010, 56, 1236–1246.
37. Nymalm, Y.; Puranen, J.S.; Nyholm, T.K.; Käpylä, J.; Kidron, H.; Pentikäinen, O.T.; Airenne, T.T.; Heino, J.; Slotte, J.P.; Johnson, M.S. Jararhagin-derived RKKH peptides induce structural changes in _1I domain of human integrin _1_1. J. Biol. Chem. 2004,.
38. Collins, E.; Bracamonte, M.P.; Burnett Jr, J.C.; Miller, V.M. Mechanism of relaxations to dendroaspis natriuretic peptide in canine coronary arteries. J. Cardiovasc. Pharmacol. 2000, 35, 614–618.
39. Sciani, J.M.; Pimenta, D.C. The modular nature of bradykinin-potentiating peptides isolated from snake venoms. J. Venom. Anim. Toxins Incl. Trop. Dis. 2017, 23, 45.
40. Tazón Varela MA, Piris-García X, Hernández-Herrero M, Pérez-Mier L, Gortazar-Salazar E. Mordedura por víbora de Seoane. Descripción de un caso y revisión de la literatura. Semergen. 2017;43(3):e25–8.
41. Internacional C. Clasificación Internacional de Enfermedades, 10.a Revisión. Modificación Clínica. 2018.
42. Asociación Médica Mundial. Declaración de Helsinki de la Asociación Médica Mundial. Principios éticos para las investigaciones médicas en seres humanos [sede web]*. Brasil: 64a Asamblea de la Asociación Médica Mundial; 9 de julio del 2018 [acceso 17 de di.
43. Whiska Montaño. Grupo Etario OMS. Junio. https://es.scribd.com/doc/145170150/Grupo-Etario. Published 2013. Accessed November 1, 2016.
44. Etnohistoria de los pueblos y nacionalidades originarias del Ecuador [Internet]. Laboratorio de interculturalidad de Flacso Ecuador - CARE Ecuador. 2016. Available from: https://www.care.org.ec/wp-content/uploads/2016/02/Modulo-2.pdf.
45. Cantón Taisha / Bloque 1.3 Proyecto: “Levantamiento de cartografía temática. 2015; 1–72.
46. Instituto Nacional de Estadística y Censos. INEC. Proyección de la Población Ecuatoriana, por años calendario, según cantones 2010-2020. Disponible en: http://www.ecuadorencifras.gob.ec/proyecciones-poblacionales/.
47. Infraestructura de Datos Espaciales para Instituto Geográfico Militar 2017, Quito-Ecuador. Disponible en: http://www.geoportaligm.gob.ec/portal/index.php/cartografia-de-libre-acceso-escala-50k/.
48. Instituto Geográfico Militar. Cartografía. 2016. Quito, Ecuador. Disponible en: http://www.igm.gob.ec/index.php/en/.
Publicado
2020-07-28
Cómo citar
1.
Ochoa Andrade MJ. Frecuencia del envenenamiento por mordeduras de serpientes y perfil sociodemográfico en una población de la Amazonía ecuatoriana y revisión de la literatura. PFR [Internet]. 28 de julio de 2020 [citado 27 de diciembre de 2024];5(2). Disponible en: https://practicafamiliarrural.org/index.php/pfr/article/view/152